Titanium Carbide Derived Nanoporous Carbon for Energy-Related Applications

نویسندگان

  • Ranjan Dash
  • John Chmiola
  • Gleb Yushin
  • Yury Gogotsi
  • Giovanna Laudisio
  • Jonathan Singer
  • John E. Fischer
  • Sergei Kucheyev
  • John Fischer
چکیده

High surface area nanoporous carbon has been prepared by thermo-chemical etching of titanium carbide TiC in chlorine in the temperature range 200–1200 °C. Structural analysis showed that this carbide-derived carbon (CDC) was highly disordered at all synthesis temperatures. Higher temperature resulted in increasing ordering and formation of bent graphene sheets or thin graphitic ribbons. Soft X-ray absorption near-edge structure spectroscopy demonstrated that CDC consisted mostly of sp2 bonded carbon. Small-angle X-ray scattering and argon sorption measurements showed that the uniform carbon-carbon distance in cubic TiC resulted in the formation of small pores with a narrow size distribution at low synthesis temperatures; synthesis temperatures above 800 °C resulted in larger pores. CDC produced at 600–800 °C show great potential for energy-related applications. Hydrogen sorption experiments at −195.8 °C and atmospheric pressure showed a maximum gravimetric capacity of ∼ 330 cm3/g (3.0 wt.%). Methane sorption at 25 °C demonstrated a maximum capacity above 46 cm3/g (45 vol/vol or 3.1 wt.%) at atmospheric pressure. When tested as electrodes for supercapacitors with an organic electrolyte, the hydrogen-treated CDC showed specific capacitance up to 130 F/g with no degradation after 10 000 cycles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TiC-carbide derived carbon electrolyte adsorption study by ways of X-ray scattering analysis

Understanding ion adsorption in nanoporous carbon electrodes is of great importance for designing the next-generation of high energy density electrical double-layer capacitors. In this work, X-ray scattering is used for investigating the impregnation of nanoporous carbons with electrolytes in the absence of applied potential. We are able to show that interactions between the carbon surface and ...

متن کامل

Monolithic carbide-derived carbon films for micro-supercapacitors.

Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-f...

متن کامل

Influence of Structural Heterogeneity on Diffusion of CH4 and CO2 in Silicon Carbide-Derived Nanoporous Carbon

We investigate the influence of structural heterogeneity on the transport properties of simple gases in a Hybrid Reverse Monte Carlo (HRMC) constructed model of silicon carbide-derived carbon (SiC-DC). The energy landscape of the system is determined based on free energy analysis of the atomistic model. The overall energy barriers of the system for different gases are computed along with import...

متن کامل

A Review on Titanium Nitride and Titanium Carbide Single and Multilayer Coatings Deposited by Plasma Assisted Chemical Vapor Deposition

In this paper, we reviewed researches about the titanium nitride (TiN) and titanium carbide (TiC) single and multilayer coatings. These coatings were deposited by the plasma assisted chemical vapor deposition (PACVD) technique. Plasma-based technologies are used for the processing of thin films and coatings for different applications such as automobile and aerospace parts, computer disc drives,...

متن کامل

Nanoporous carbide-derived carbon with tunable pore size.

Porous solids are of great technological importance due to their ability to interact with gases and liquids not only at the surface, but throughout their bulk. Although large pores can be produced and well controlled in a variety of materials, nanopores in the range of 2 nm and below (micropores, according to IUPAC classification) are usually achieved only in carbons or zeolites. To date, major...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016